

CBCS CURRICULUM OF

M.Sc. ZOOLOGY PROGRAMME

SUBJECT CODE = ZOOL

FOR POST GRADUATE COURSES UNDER NILAMBER PITAMBER UNIVERSITY

Members of Board of Studies of CBCS Under- Graduate Syllabus as per Guidelines of the. Nilamber Pitamber University

1. Chairperson

Dr.Ambalika Prasad

HoD (Incharge)

A. Prazano

University Del artment of Zoology, NPU

2. External Member s:-

1.Prof.(Retd) Firoz Ahmad,

Dept. of Zoology Ranchi University Ranchi

2. Prof.(Retd) D.S Srivastava,,

Dept. of Zoology G L.A College

3. Internal Members:

1. Dr.D.P Pandey
Asst. Prof Zoology, SSJSN—College

2 .Dr.Bijay Bahadur ! ingh Asst.Prof.,Zoology G.L.A. College

3. Dr. Shobha Rani,
Asst.Prof.,ZoologyY.S.N.M. College

4 .Mr.Padip Kumar
Asst.Prof.,Zoology G.L.A College

Hawaya 13/2

26/03/202/ 26/03/202/

24.06, 2021 Day 2020

Contents

S.No	Descriptions	Page No.
	Members of Board of Studies	2
	Contents	3
1	COURSE STUCTURE FOR M.Sc. ZOOLOGY PROGRAMME	4
2	Semester Wise Examination Structure for Mid Sem & End Sem Examinations	5
	Marks Weightage and Scheme of Examination	3
	SEMESTER-I	_
3	FOUNDATION COURSE [FCZOOL-101]	6
4	CORE COURSE [CC-1]	7
5	CORE COURSE [CC-2]	8
6	CORE COURSE [CC-3P]	9-10
	SEMESTER-II	No.
7	ELECTIVE COURSE [EC-1]	11
8	CORE COURSE [CC-4]	12
9	CORE COURSE [CC-5]	13
10	CORE COURSE PRACTICAL [CC(P) -6]	14
	SEMESTER-III	
11	CORE COURSE [CC-7]	15-16
12	CORE COURSE [CC-8]	17-18
13	ELECTIVE [EC-2A]	19
14	ELECTIVE [EC-2B]	20
15	ELECTIVE [EC(P)-3A]	21
16	ELECTIVE [EC(P)-3B]	22
	SEMESTER-IV	- 0
17	CORE COURSE [CC-9]	23-24
18	ELECTIVE [EC-4A]	25
19	ELECTIVE [EC-4B]	26
20	ELECTIVE [EC(P)-5A]	27
21	ELECTIVE [EC(P)-5B]	28
22	Project [CC10 Project]	29

COURSE STRUCTURE FOR M.Sc ZOOLOGY PROGRAMME

Semester	Courses	Paper	Paper Code	Credit	Hrs./week
	Foundation Course	FC	FCZOOL101	5	5 (L)+1(T)
	Core Course	CC1	CCZOOL101	5	5 (L)+1(T)
I	G G	CC2	007001402		F (T) - 1 (TE)
1	Core Course	CC2	CCZOOL102	5	5 (L)+1(T)
	Practicals on Core	СС3-Р	CCZOOL103	5	10
	Tracticals on core	CC3-1	CCZOOLIUS		10
	Course		4 641 (6		
		*		٧.,	
	Ability	EC1	ECZOOL201	5	5 (L)+1(T)
	7.1			1	
	Enhancement		***		22
	Course				7 (0.0)
	Course	6.	PI.	1	
II	Core Course	CC4	CCZOOL204	5	5 (L)+1(T)
	Core Course	CC5	CCCHEM205	5	5 (L)+1(T)
		0.014	0.000		
	Practicals on Core	CC6-P	CCZOOL206	5	10
1. 15	Course				
	Course	-			
	Core Course	CC7	CCZOOL307	5	5 (L)+1(T)
15					
	Core Course	CC8	CCZOOL308	5	5 (L)+1(T)
100				1.1	
III	Elective (GE/DC)	EC2	ECZOOL302	5	5 (L)+1(T)
	Practicals on	EC3-P	ECZOOL303	5///	10
	Tracticals off	EC3-1	ECZOOL303	9//4	10
	Elective (GE/DC)	J			
	Core Course	CC9	CCZOOL409	5	5 (L)+1(T)
	Elective (GE/DC)	EC4	ECZOOL404	5	5 (L)+1(T)
IV	Practicals on	EC5 D	ECZOOL405	5	5 (I) : 1 (T)
1 1	Fracticals on	EC5-P	ECZUUL403	3	5 (L)+1(T)
	Elective (GE/DC)				
	Project/Dissertion	CC10	CCZOOL410	5	10

Table AI-2.1 Semester wise Examination Structure for Mid Sem & End Sem Examinations:

		Core, AE/ GE/ DC	Examination Structure				
Sem	Paper	aper Code	Cre dit	Name of Paper	Mid Semester Evaluation (F.M.)	End Semester Evaluation (F.M.)	End Semester Practical/ Viva (F.M.)
	FC	FCZOOL101	5	Systematics, Evolution & Bioinformatics	30	70	
I	CC1	CCZOOL101	5	Invertebrate Diversity & Quantitative Biology	30	70	
	CC2	CCZOOL102	5	Biotechniques, Histology & Histochemistry	30	70	
	CC3P	CPZOOL103	5	Practical-I	j	\times	100
	EC1	ECZOOL-201	5	Cellular and Molecular Biology	30	70	91
п	CC4	CCZOOL204	5	Vertebrate Diversity, Ethology & Classical Genetics	30	70	Q-17
a	CC5	CCZOOL205	5	Environmental and General Vertebrate Physiology	30	70	
	CC6	CPZOOL-206	5	Practical-II	-\	-	100
	CC7	CCZOOL307	5	Endocrinology & Developmental Biology	30	70	7-
III	CC8	CCZOOL308	5	Biochemistry & Immunology	30	70	
Ţ	EC2	ECZOOL-302	5	A. Fish and Fisheries-I B. Ecology-I	30	70	Z
	ЕС3-Р	ECZOOL-303	5	A. Practical - Fish and Fisheries/-I B. Practical – Ecology -I	-H	//=	100
	CC9	CCZOOL-409	L	Mammalian Reproductive Physiology & Biotechnology	30	70	
IV	EC4	ECZOOL-404	5	A. Fish and Fisheries-II B. Ecology-II	30	70	/
	EC5-P	EPZOOL-405	5	A. Practical - Fish and Fisheries - II B. Practical - Ecology - II	d.		100
	CC10	CCZOOL-410	5	Project Work	-		100

	SEMESTER I
I. FO	DUNDATION COURSE [FCZOOL101]: (Credits: Theory-04, Tutorial-01)
	Marks 30 (MSE 20 1 Hr + 5 Attd. + 5 Assign) + 70 (ESE : 3 Hrs) = 100 Pass Marks (MSE : 17 + ESE : 28) = 45
AID SEME	STER EXAMINATION (MSE)
SIA) of 20 1	nester Examination shall have three components: (a) Two Semester Internal Assessment Temarks each. "Better of Two" shall be applicable for computation of marks for SIA. (b) Regular Interactions of 05 marks and (c) Assignment of 05 marks.
END SEME	STER EXAMINATION (ESE)
nswer mem	within the stipulated time.
SYSTEM	IATICS, EVOLUTION & BIOINFORMATICS Theory 60 Hours: Tutorial: 15 Hours
SYSTEM UNIT I	Theory: 60 Hours; Tutorial: 15 Hours
- 19	Theory: 60 Hours; Tutorial: 15 Hours Animal Systematics Basic concept and nature of taxonomy and Systematics, contribution of systematic to
- 19	Theory: 60 Hours; Tutorial: 15 Hours Animal Systematics Basic concept and nature of taxonomy and Systematics, contribution of systematic to biology Different types of Classification
- 19	Theory: 60 Hours; Tutorial: 15 Hours Animal Systematics Basic concept and nature of taxonomy and Systematics, contribution of systematic to biology Different types of Classification Numerical /Phenetic, Cladistic, Evolutionary Systematics (Phylogenetic) Concept of Cytotaxonomy, Chemical and
- 19	Theory: 60 Hours; Tutorial: 15 Hours Animal Systematics Basic concept and nature of taxonomy and Systematics, contribution of systematic to biology Different types of Classification Numerical /Phenetic, Cladistic, Evolutionary Systematics (Phylogenetic) Concept of Cytotaxonomy, Chemical and Molecular taxonomy Systemic hierarchy, names, codes
- 19	Theory: 60 Hours; Tutorial: 15 Hours Animal Systematics Basic concept and nature of taxonomy and Systematics, contribution of systematic to biology Different types of Classification Numerical /Phenetic, Cladistic, Evolutionary Systematics (Phylogenetic) Concept of Cytotaxonomy, Chemical and
UNIT I	Theory: 60 Hours; Tutorial: 15 Hours Animal Systematics Basic concept and nature of taxonomy and Systematics, contribution of systematic to biology Different types of Classification Numerical /Phenetic, Cladistic, Evolutionary Systematics (Phylogenetic) Concept of Cytotaxonomy, Chemical and Molecular taxonomy Systemic hierarchy, names, codes Operative principles of nomenclature, application of important rules Evolution Concept of Evolution, Theories of organic evolution: Neo
UNIT I	Theory: 60 Hours; Tutorial: 15 Hours Animal Systematics Basic concept and nature of taxonomy and Systematics, contribution of systematic to biology Different types of Classification Numerical /Phenetic, Cladistic, Evolutionary Systematics (Phylogenetic) Concept of Cytotaxonomy, Chemical and Molecular taxonomy Systemic hierarchy, names, codes Operative principles of nomenclature, application of important rules Evolution Concept of Evolution, Theories of organic evolution: Neo Darwinism Synthetic theory of Evolution
UNIT I	Theory: 60 Hours; Tutorial: 15 Hours Animal Systematics Basic concept and nature of taxonomy and Systematics, contribution of systematic to biology Different types of Classification Numerical /Phenetic, Cladistic, Evolutionary Systematics (Phylogenetic) Concept of Cytotaxonomy, Chemical and Molecular taxonomy Systemic hierarchy, names, codes Operative principles of nomenclature, application of important rules Evolution Concept of Evolution, Theories of organic evolution: Neo
UNIT I	Animal Systematics Basic concept and nature of taxonomy and Systematics, contribution of systematic to biology Different types of Classification Numerical /Phenetic, Cladistic, Evolutionary Systematics (Phylogenetic) Concept of Cytotaxonomy, Chemical and Molecular taxonomy Systemic hierarchy, names, codes Operative principles of nomenclature, application of important rules Evolution Concept of Evolution, Theories of organic evolution: Neo Darwinism Synthetic theory of Evolution Population, Gene frequency, Hardy Weinberg's law in genetic stability Bioinformatics
UNIT II	Theory: 60 Hours; Tutorial: 15 Hours Animal Systematics Basic concept and nature of taxonomy and Systematics, contribution of systematic to biology Different types of Classification Numerical /Phenetic, Cladistic, Evolutionary Systematics (Phylogenetic) Concept of Cytotaxonomy, Chemical and Molecular taxonomy Systemic hierarchy, names, codes Operative principles of nomenclature, application of important rules Evolution Concept of Evolution, Theories of organic evolution: Neo Darwinism Synthetic theory of Evolution Population, Gene frequency, Hardy Weinberg's law in genetic stability Bioinformatics Principles of bioinformatics and its
UNIT II	Theory: 60 Hours; Tutorial: 15 Hours Animal Systematics Basic concept and nature of taxonomy and Systematics, contribution of systematic to biology Different types of Classification Numerical /Phenetic, Cladistic, Evolutionary Systematics (Phylogenetic) Concept of Cytotaxonomy, Chemical and Molecular taxonomy Systemic hierarchy, names, codes Operative principles of nomenclature, application of important rules Evolution Concept of Evolution, Theories of organic evolution: Neo Darwinism Synthetic theory of Evolution Population, Gene frequency, Hardy Weinberg's law in genetic stability Bioinformatics Principles of bioinformatics and its application Biological databases: Nucleic acid sequence databases
UNIT II	Theory: 60 Hours; Tutorial: 15 Hours Animal Systematics Basic concept and nature of taxonomy and Systematics, contribution of systematic to biology Different types of Classification Numerical /Phenetic, Cladistic, Evolutionary Systematics (Phylogenetic) Concept of Cytotaxonomy, Chemical and Molecular taxonomy Systemic hierarchy, names, codes Operative principles of nomenclature, application of important rules Evolution Concept of Evolution, Theories of organic evolution: Neo Darwinism Synthetic theory of Evolution Population, Gene frequency, Hardy Weinberg's law in genetic stability Bioinformatics Principles of bioinformatics and its application Biological databases: Nucleic acid sequence databases Protein sequence databases
UNIT II	Theory: 60 Hours; Tutorial: 15 Hours Animal Systematics Basic concept and nature of taxonomy and Systematics, contribution of systematic to biology Different types of Classification Numerical /Phenetic, Cladistic, Evolutionary Systematics (Phylogenetic) Concept of Cytotaxonomy, Chemical and Molecular taxonomy Systemic hierarchy, names, codes Operative principles of nomenclature, application of important rules Evolution Concept of Evolution, Theories of organic evolution: Neo Darwinism Synthetic theory of Evolution Population, Gene frequency, Hardy Weinberg's law in genetic stability Bioinformatics Principles of bioinformatics and its application Biological databases: Nucleic acid sequence databases

☐ Attwood T.K. & Parry-Smith D.J. – Introduction to Bioinformatics. Pearson 2001

□ Sundararrajan S. & Balaji R. - Introduction to Bioinformatics 1^{st} edn. Himalaya 2002 □ Murthy C.S.V. – Bioinformatics 1^{st} edn. Himalaya 2004

II. CORE COURSE [CCZOOL101]:

Marks 30 (MSE 20 1 Hr + 5 Attd. + 5 Assign) + 70 (ESE : 3 Hrs) = 100 Pass Marks (MSE : 17 + ESE : 28) = 45

MID SEMESTER EXAMINATION (MSE)

The Mid Semester Examination shall have three components: (a) Two Semester Internal Assessment Test (SIA) of 20 marks each. "Better of Two" shall be applicable for computation of marks for SIA. (b) Attendance / Regular Interactions of 05 marks and (c) Assignment of 05 marks.

END SEMESTER EXAMINATION (ESE)

A total of **EIGHT questions** will be set in which Question 1 will be **Short Answer Type** and **COMPULSORY**. Any **four** questions shall have to be answered by the examinees out of the remaining seven questions. The questions will be of equal marks and will be so framed that the students are able to answer them within the stipulated time.

INVERTEBRATE DIVERSITY & QUANTITATIVE BIOLOGY

Theory: 60 Hours; Tutorial: 15 Hours

(Credits: Theory-04, Tutorial-01)

UNIT I

Invertebrate Diversity

Concept of Protostomes and Deuterostomes

Origin of coelom – Acoela, Pseudocoela, Schizocoela and Enterocoela.

Locomotion in Protozoa

Locomotion in Cnidaria, Annelida and Echinoderm with reference to Hydrostatic movement.

Origin of Segmentation

Excretion and Osmoregulation in Protozoa

Nephridia and Coelomic System in Annelids

Respiration: Arthropods, Mollusca

UNIT II

Quantitative biology

Biostatistics: Samples and population, sampling designs

Probability distributions and their properties: Normal, Binomial, Poisson distribution

Hypothesis testing: Non parametric tests and parametric tests

Chi square, G-, t-, f-test, Analysis of variance, Correlation,

Evaluation of Biodiversity indices: Shannon – Weiner index, index of dominance,

, Association index: 2 x 2 contingency table

References:

TT	T TT	7D1 1	1		1 T	T 7T 3 4		TT'11 1/	10 1		TIDD	٨
Ruppert	E.E. &	Barn	es, R.D.	- Inv	ertebra	ate Zoo	ology.	6 th edn.	Harco	ourt Asia	1994	
Barringt	ton E.J	.W I	lnverteb	rate s	tructur	e and	tunctic	on. 2 nd e	dn. El	LBS/NeIs	on 1973	

☐ Hyman L. H. – The Invertebrata. vols I – VI McGraw-Hill 1940 - 1967**VERTEBRATE BIOLOGY**

□ Pough F.H., Janis C.M. & Heiser J.B. – Vertebrate Life. 6th edn. Pearson 2003

□ Romer A.S. – The Vertebrate body. 3rd edn. Vakils 1962

☐ Young J. Z. – Life of Vertebrates. 3rd edn. Oxford 1982

III. CORE COURSE [CCZOOL102]:

(Credits: Theory-04, Tutorial-01)

Marks 30 (MSE 20 1 Hr + 5 Attd. + 5 Assign) + 70 (ESE : 3 Hrs) = 100 Pass Marks (MSE : 17 + ESE : 28) = 45

MID SEMESTER EXAMINATION (MSE)

The Mid Semester Examination shall have three components: (a) Two Semester Internal Assessment Test (SIA) of 20 marks each. "Better of Two" shall be applicable for computation of marks for SIA. (b) Attendance / Regular Interactions of 05 marks and (c) Assignment of 05 marks.

END SEMESTER EXAMINATION (ESE)

A total of **EIGHT questions** will be set in which Question 1 will be **Short Answer Type** and **COMPULSORY**. Any **four** questions shall have to be answered by the examinees out of the remaining seven questions. The questions will be of equal marks and will be so framed that the students are able to answer them within the stipulated time.

BIOTECHNIQUES, HISTOLOGY & HISTOCHEMISTRY

Theory: 60 Hours; Tutorial:15 Hours

UNIT I

Biotechniques

Analytical instruments: Spectrophotometry and spectrophotometric principles.

Spectroscopy - Atomic Absorption, ESR and NMR Spectroscopy, Microscopy and Scanning and Transmission electron microscopes, Fluorescence microscopy Cryotechniques-Cryopreservation of cells, tissues and organisms,

Separation techniques: Ion- exchange and HPLC)

Electrophoresis (Agarose and SDS PAGE)

Centrifugation: Basic principles, differential and density gradient centrifugation

ELISA

UNIT II

Histology & Histochemistry

Fixation and tissue processing: Types of fixatives, Chemistry of fixation and selection of Fixatives, Dehydration, Clearing and embedding, Microtomy.

Staining of paraffin sections: Principle and methods of staining, Histological stains Protein end groups -

Mercury Bromophenol Blue, Ninhydrin-Schiff, Performic acid-Schiff

Lipid moieties - by Sudan Black B method

Nucleic acids - DNA and RNA by Methyl green pyronin-Y, DNA by Feulgen reaction.

Reference:

Pearse A.G.E Histochemistry – Theoretical and Applied. vols I – III Churchill
Bancroft J.D. & Stevens A. – Theory and Practice of Histological techniques.4 th edn. Churchill
Livingstone 1996
Barka T. & Anderson P.J. – Histochemistry, Theory Practice and Bibliography.
Harper and Raw 1965
Sharma A.K. & Sharma A. – Chromosome Techniques. Theory and Practice. 3 rd edn. Butterworths 1980
Verma G.P. – Fundamentals of Histology. New Age 2001

IV. CORE COURSE PRACTICAL [CPZOOL103]: (Credits: Practical-05)

Marks: 30 (ESE: 20 Viva + 5Attd. + 5 Record) + 70 (ESE Pr: 6Hrs)=100

End Term (External) Assessment

PRACTICAL-I Marks Distribution

Scheme of examinations

Items			
Anatomical observation	(1x10)	10	
Preparation of permanent slide	(whole mount – 1)	10	
Quantitative assessment of Glucose in a test so	lution by spectrophotometer	20	
Histochemical staining of the material provide	d	10	
Spotting [slides 05, museum specimens 05]	(10×2)	20	
Records and Sessional work	100	10	В
Viva voce	ATL:	20	L

List of Practicals

Invertebrate Diversity

General anatomy of:

Leech/ Prawn/ Squilla/ Scorpion/ Aquatic Beetle/ Mytilus/ Aplysia/ Sea urchin

Museum specimens:

Important representatives of different invertebrate phyla showing peculiarities/ adaptive features/ associations/ stages

Specimens showing convergent and divergent evolutions

Specimens of connecting links and living fossils- Limulus, Peripatus

Specimens showing mimicry and melanism

Slides:

Slides of larval stages showing recapitulation of ontogeny (Helminthes, Crustacean)

Preparation of taxonomic key upto order of the following:

Coelenterata – Hydra, Obelia (medusa and polyp), Physalia, Gorgonia, Aurelia, Metridium Rotifera - Brachionus

Annelida – Earthworm, *Tubifex*, *Neries* and *Heteronereis*, *Arenicola*, *Chaetopterus*, *Hirudo* Arthropods – *Sacculina* on crab, Crab, Prawn, *Lepus*, *Balanus*, Butterfly, Water beetle, *Cyclops*

Mollusca – Chiton, Pila, Unio, Loligo, Sepia, Octopus, Aplysia, Dentalium Echinodermata – Asteria, Echinus, Antedon, Cucumaria, Holothuria

<u>Study of the following using permanent slides</u> - Trematode, Cestode, Nematode Larval stages in the life cycle of diagenetic trematodes

Biotechniques

Use of Ph meter, water bath, autoclave, balance, centrifuge, colorimeter, spectrophotometer

Measurement, figure drawing, and photography through microscope

Separation of amino acids, DNA by Gel electrophoresis

Histology and Histochemistry

Preparation of fixatives for histological and different histochemical staining Paraffin sectioning

Fixation of tissue

Dehydration, clearing and embedding, microtomy

Staining of paraffin sections

Preparation of stains for histological and different histochemical staining Histochemical staining of:

Lipids using Sudan black B, Sudan III, Sudan IV methods Carbohydrate moieties using PAS, Alcian blue at different pH.

Bioinformatics

Use of search engines

Use of data bases – Gene Bank, PubMeD.

<u>P.</u>	<u> 3.</u>	CBCS	NPU
		SEMESTER II	
I.	ECZOOL201 (EL	ECTIVE COURSE):	(Credits: Theory-05)
	Marks 30 (MS	E 20 1 Hr + 5 Attd. + 5 Assign) + Pass Marks (MSE : 17 + ESE : 2	
MID	SEMESTER EXAMINA	ATION (MSE)	
(SIA	a) of 20 marks each. "Bette	shall have three components: (a) To f Two" shall be applicable for conns of 05 marks and (c) Assignment	
END	SEMESTER EXAMINA	ATION (ESE)	
CON sever answ	MPULSORY. Any four questions. The questions ver them within the stipulat	will be of equal marks and will be s ed time. LECULAR BIOLOGY	y the examinees out of the remaining to framed that the students are able to
	3	Theo	ory: 60 Hours; Tutorial:15 Hours
	Biomembranes and cell m	atrix adhesion	
	Protein Synthesis and traf	ficking	1 1 3
	Cell Signalling and Cell-C	Cell Interaction	/// 2.5
	Transcription: Mechanism Translation: Ribosome, F. a. Lac Operon, Tryptop	tion, enzymes involved, Telomeric In of Transcription, Basic concepts of ormation of Initiation Complex. Initian Operon and Arabinose Operon. ession in Eukaryotes: Conserved Mo	f Transcription Regulation iation factors and their
Refe	rence :	224	- 476-
	Molecular Cell Biology Cooper G.M. – The Cel Becker W.M., Reece J.I De Robertis E.D.P. & D Williams and Wilkins 2 Lewin B. – Genes VI – Watson J.D., Baker T.A Gene.5 th edn. Pearson 2	XII. Oxford 2000 - 2008 ., Bell S.P., Gann A., Levine M. & Los	997 Jell. 3 rd edn. Benjamin 1996 Jeular Biology. 8 th edn. Lippincott Jeick R. – Molecular Biology of the

II. CORE COURSE

[CCZOOL204]:

(Credits: Theory-04, Tutorial-01)

Marks 30 (MSE 20 1 Hr + 5 Attd. + 5 Assign) + 70 (ESE : 3 Hrs) = 100 Pass Marks (MSE : 17 + ESE : 28) = 45

MID SEMESTER EXAMINATION (MSE)

The Mid Semester Examination shall have three components: (a) Two Semester Internal Assessment Test (SIA) of 20 marks each. "Better of Two" shall be applicable for computation of marks for SIA. (b) Attendance / Regular Interactions of 05 marks and (c) Assignment of 05 marks.

END SEMESTER EXAMINATION (ESE)

A total of **EIGHT questions** will be set in which Question 1 will be **Short Answer Type** and **COMPULSORY**. Any **four** questions shall have to be answered by the examinees out of the remaining seven questions. The questions will be of equal marks and will be so framed that the students are able to answer them within the stipulated time.

VERTEBRATE DIVERSITY, ETHOLOGY & CLASSICAL GENETICS

Theory: 60 Hours; Tutorial:15 Hours

UNIT I

Vertebrate Diversity

Neomorphic air breathing organs in fish

Electric organ & Electro-Receptors in fishes

Reproductive adaptations - Internal fertilization, Viviparity, Paedomorphosis and neoteny

Endocrine control of metamorphosis of the tadpole

Aerodynamics and energetic of flying and gliding in birds

Sensory system in birds - Vision, Olfaction, Hearing, Special senses used in navigation

Dentition in mammals, Aquatic mammals.

UNIT II

Ethology

General concepts of Ethology: Motivation; Fixed Action Pattern; Sign or key stimulus or release; Innate Releasing Mechanism; Action specific energy; Learning or Experience

Imprinting; Physiological Basis; Behavioral genetics; Evolution of Behaviour;

Behaviour and its types: Individual and social interaction, Social organization, Innate and learned behavior,

Orientation in animals - its nature and types

Biological rhythms – occurrence and significance:

UNIT III

Classical Genetics

Extension of Mendelian principles – codominance, incomplete dominance, gene interactions, pleiotropy, sex limited and sex influenced characters

Extra chromosomal inheritance – inheritance of mitochondrial and chloroplast gene

References:

	Manning A. &	Dawkins M.S	5. – An I	ntroduction to	Animal	Behaviour.	Cambridge	1995
--	--------------	-------------	-----------	----------------	--------	------------	-----------	------

□ Prasad S. – Animal Behaviour. CBS 2004

☐ Mathur R. – Animal Behaviour. Rastogi 2002

III. CORE COURSE [CCZOOL205]: (Credits: Theory-04, Tutorial-01)

Marks 30 (MSE 20 1 Hr + 5 Attd. + 5 Assign) + 70 (ESE : 3 Hrs) = 100 Pass Marks (MSE : 17 + ESE : 28) = 45

MID SEMESTER EXAMINATION (MSE)

The Mid Semester Examination shall have three components: (a) Two Semester Internal Assessment Test (SIA) of 20 marks each. "Better of Two" shall be applicable for computation of marks for SIA. (b) Attendance / Regular Interactions of 05 marks and (c) Assignment of 05 marks.

END SEMESTER EXAMINATION (ESE)

A total of **EIGHT questions** will be set in which Question 1 will be **Short Answer Type** and **COMPULSORY**. Any **four** questions shall have to be answered by the examinees out of the remaining seven questions. The questions will be of equal marks and will be so framed that the students are able to answer them within the stipulated time.

ENVIRONMENTAL AND GENERAL VERTEBRATE PHYSIOLOGY

Theory: 60 Hours; Tutorial: 15 Hours

UNIT I

Environmental Physiology

- Elementary idea of stress and strain
- Adaptation, Fundamental mechanisms of adaptation. Physiological responses to exposure to cold, heat, low pressure (hypobaria), high pressure, electromagnetic radiation
- Thermoregulation
 Mechanism of thermoregulation in vertebrates, Ectotherms and Endotherms
 Endothermy as a high–energy approach to life. Anatomical, Physiological and
 Behavioral adaptations in endotherms to extreme hot & extreme cold.
- Excretion/Osmoregulation
 Patterns of excretion, organs of excretion. Physiology of Urine formation.

 Problems of salt balance in aquatic vertebrates.

UNIT II

General Vertebrate Physiology

- Respiration: Respiratory pigments in animals, Transport of gases, O₂ dissociation curve, Bohr's effect, Root effect, CO₂ transport, CO₂ equilibrium curve, Regulation of acid base balance. Hb and associated diseases: sickle cell Anemia & Thalassemia. Cardio-Vascular System
- Contractibility / Motility
 Molecular structure of striated muscles and mechanism of muscle contraction.
- Nervous system: Electrical potentials and its molecular basis. Propagation of impulses along myelinated nerves, Neurotransmitters. Autonomic nervous system

Reference:

- ☐ Kay I. Introduction to Animal Physiology. Bios Scincetific Publ Ltd 1998
- Guyton A.C. & Hall J.E. Text Book of Medical Physiology. 9th edn. Saunders 1996
- Talwar G.P. & Srivastava L.M.(edt.) Text Book of Biochemistry and Human Biology. 3rd edn.

IV. CORE COURSE PRACTICAL [CCPZOOL206]: (Credits: Practical-05)

Marks: 30 (ESE: 20 Viva + 5Attd. + 5 Record) + 70 (ESE Pr: 6Hrs)=100

PRACTICAL-II Practical: 60Hours

End Term (External) Assessment

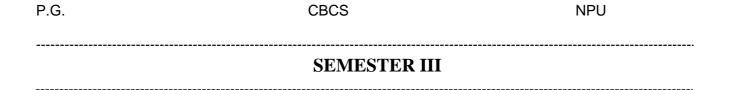
Scheme of examinations		Time: 6Hrs
Items	-	Marks Distribution
Anatomical observation	(2x10)	20
Physiology experiments - 2	(2x10)	20
Spectrophotometric determination		X4-7-100-
[Protein/ Glucose/ Cholesterol/ Triglyceric	le/ DNA/ RNA]	30
Records and Sessional work		10
Viva voce	\	20

List of Practicals

Vertebrate diversity

Museum SPECIMENS:

Models – Latimeria, *Sphenodon*, Ostrich, different types of beaks and feet in birds, nest of birds, Specimens – Petromyzon, Myxine, Electric ray, Acipenser, Caecilian, Hyla/ Rhacophorus, Axolotl larva/ Salamander, Draco, Turtle, Snakes: Cobra, Krait, Rattle snake, Sea snake, Water snake, Bat


Physiology

Measurement of metabolic rate in small animals - effect of stress on gill ventilation in fishplotting zone of resistance and zone of tolerance

method to show effects of exercise plotting time of acclimation

Detection of presence of blood in urine / fecal matter by Benzidine test

^{के} सो ज्या

I. CORE COURSE [CCZOOL307]

Marks 30 (MSE 20 1 Hr + 5 Attd. + 5 Assign) + 70 (ESE : 3 Hrs) = 100 Pass Marks (MSE : 17 + ESE : 28) = 45

MID SEMESTER EXAMINATION (MSE)

The Mid Semester Examination shall have three components: (a) Two Semester Internal Assessment Test (SIA) of 20 marks each. "Better of Two" shall be applicable for computation of marks for SIA. (b) Attendance / Regular Interactions of 05 marks and (c) Assignment of 05 marks.

END SEMESTER EXAMINATION (ESE)

A total of **EIGHT questions** will be set in which Question 1 will be **Short Answer Type** and **COMPULSORY**. Any **four** questions shall have to be answered by the examinees out of the remaining seven questions. The questions will be of equal marks and will be so framed that the students are able to answer them within the stipulated time.

ENDOCRINOLOGY & DEVELOPMENTAL BIOLOGY

Theory: 60 Hours; Tutorial:15 Hours

(Credits: Theory-04, Tutorial-01)

UNIT I

Comparative and molecular endocrinology

• Chemical messengers, hormones and mechanism of their action Hormone – synthesis, secretion, mode of delivery, half life, entry into the target cells, and action.

Receptor types and structure, second messenger system, Pineal in vertebrates, It's hormones and function .

- Mammalian endocrine glands, their hormones and functions: Adenohypophysis, Neurohypophysis; Thyroid; Adrenal; Parathyroid
- Physiological Endocrinology: Endocrinology of calcium regulation

UNIT II

Developmental Biology

- Fertilization: Specialization of egg, structural specialization of sperm, speciesspecific binding of gamates, sperm-egg fusion, capacitation, Acrosomal reaction, prevention of polyspermy.
- Cell differentiation: Myogenesis (skeletal muscle formation, regeneration and hypertrophy) Differentiation of erythrocytes(Stem cells and their diversification,control of haemoglobin synthesis, erythrocyte membrane)
- Postembryonic development: Metamorphosis of Anuran and Insect,

Reference

- □ Austin C. R. & Short R.V. Reproduction in Mammal Books 1 to 7 Cambridge
 □ Nalbandov A.V. Reproductive Physiology Taraporevala 1970
 □ Tienhoven A. V. Reproductive Physiology of Vertebrates 2nd edn. Cornell Univ
- ☐ A Text-Book Reproduction in Farm Animals (Theriogenology) Varghese 1994
- □ Ramaswami L.S. Vertebrate Neurosecretion: A Review INSA 1980
- □ Norris D.O. Vertebrate Endocrinology 3rd edn. Elsevier / A,P. 2006
- □ Bolander F.F. Molecular Endocrinology 3rd edn Elsevier / A,P. 2006
- ☐ Hadley M.E. Endocrinology 5th edn. Prentice Hall Int. 2000
- ☐ Gorbman A., Dickhoff W.W., Vigna S.R., Clark A.B. & Ralph C.L. Comparative Endocrinology John Wiley 1983.
- ☐ Gilbert Developmental Biology
- ☐ Berril N. J. Developmental Biology. Tata McGraw-Hill 1982

II. CORE COURSE [CCZOOL308]:

Marks 30 (MSE 20 1 Hr + 5 Attd. + 5 Assign) + 70 (ESE : 3 Hrs) = 100 Pass Marks (MSE : 17 + ESE : 28) = 45

(Credits: Theory-04, Tutorial-01)

Theory: 60 Hours; Tutorial:15 Hours

MID SEMESTER EXAMINATION (MSE)

The Mid Semester Examination shall have three components: (a) Two Semester Internal Assessment Test (SIA) of 20 marks each. "Better of Two" shall be applicable for computation of marks for SIA. (b) Attendance / Regular Interactions of 05 marks and (c) Assignment of 05 marks.

END SEMESTER EXAMINATION (ESE)

A total of **EIGHT questions** will be set in which Question 1 will be **Short Answer Type** and **COMPULSORY**. Any **four** questions shall have to be answered by the examinees out of the remaining seven questions. The questions will be of equal marks and will be so framed that the students are able to answer them within the stipulated time.

BIOCHEMISTRY & IMMUNOLOGY

UNIT I

Biological Chemistry: Biomolecules and metabolic regulations

- a. Water As a biological solvent; Unique physical and chemical properties Ionization of water; Equilibrium constant and ionic product of water and pH;
- b. Biomolecules: Chemical bonds and bond energy
- c. Structure and significance of Biomolecules:
 Monosaccharide, Oligosaccharides and Polysaccharides
 Proteins Amino acids, Primary, secondary, tertiary and quarternary structures
 Lipids simple and complex. Significance of Biopolymers and their formation
- d. Metabolism:

Biosynthesis and degradation of protein Metabolism of fructose, glucose, and glycogen

e. Enzymes:

Mechanism of action, regulation of enzyme activity; Enzyme Kinetics Coenzymes and isoenzyme;.

UNIT II

Immunology

- Vertebrate immune system: Innate immune system; Organization and structure of lymphoid organs;
- Cells of immune system and their differentiation; Lymphocyte structure lymphocyte traffic MHC complex and antigen; Cytokines; Hypersensitivity reaction Acquired immune systems: B-cells, type and receptors; T-cells, type and receptors; Antigens, antigenicity and immunogenicity; Epitopes and Haptens; type, structure, function and diversity of antibody.
- Immunoglobins: Ig genes, Differential expression of Ig genes.

\mathbf{r}	r				
v	At a	m	m	29	

Wilson K. & Walker J. – Principles of Biochemistry and Molecular Biology. 6 th edn. Cambridge Univ.
Press 2007
Voet D., Voet J. & Pratt C.W. – Fundamentals of Biochemistry. Life at the Molecular Level. 2 nd edn.
Wiley Asia 2006
Metzler Norris D.O Vertebrate Endocrinology. 4th edn. Elsevier / A.P. 2007
Hadley M.E. – Endocrinology. 5 th edn. Pearson 2000Korf HW., Schomerus C. &
Stehle – The Pineal Organ, Its Hormone Melatonin and Photoneuroendocrine System.
Springer Verlag 1998
Ramaswami L.S. – Vertebrate Neurosecretion: A Review. INSA 1980
Fry B.E. – Hormonal Control in Vertebrates. Macmillan 1967
Davey Basiro – Immunology. Open University Press 1989
Delves P.J., Martin S.J., Burton D.R. & Roitt I.M. – Roitt's Essential Immunology. 11th edn. Oxford 2006
Shetty N. – Immunology: Introductory Text Book. Revised 2 nd edn. New Age 2008 Kuby, J. –

P.G. CBCS NPU

III. ELECTIVE COURSE [ECZOOL302A]:

(Credits: Theory-04, Tutorial-01)

Theory: 60 Hours; Tutorial: 15 Hours

Marks 30 (MSE 20 1 Hr + 5 Attd. + 5 Assign) + 70 (ESE : 3 Hrs) = 100 Pass Marks (MSE : 17 + ESE : 28) = 45

MID SEMESTER EXAMINATION (MSE)

The Mid Semester Examination shall have three components: (a) Two Semester Internal Assessment Test (SIA) of 20 marks each. "Better of Two" shall be applicable for computation of marks for SIA. (b) Attendance / Regular Interactions of 05 marks and (c) Assignment of 05 marks.

END SEMESTER EXAMINATION (ESE)

A total of **EIGHT questions** will be set in which Question 1 will be **Short Answer Type** and **COMPULSORY**. Any **four** questions shall have to be answered by the examinees out of the remaining seven questions. The questions will be of equal marks and will be so framed that the students are able to answer them within the stipulated time.

FISH AND FISHERIES-I

Fish and Fisheries

Nutritional value and economic importance of fishes: brief account of byproducts

Aquaculture – Definition and classification

Outlines of fish culture in ponds

Ornamental fishes, larvivorous fishes

Classification of living fishes up to orders

Wootton R.J. - Fish Ecology Blackie 1992

Freshwater and important marine fishes of India

Adaptations in teleosts- hill stream, cave dwelling, antifreeze, colouration, bioluminescence

Migratory behaviour in fishes

Locomotion in teleosts

Aquatic respiration in teleosts

Structure of gills, gill areas and its significance, gas exchange and ventilation of gills

Digestive system of teleosts

Alimentary canal and its modification in relation to food and feeding habits in teleosts

Reference:

_	Wootton Itter Tibn Zeorogj Ziweine 1992
	Nikolsky G.V. – The Ecology of Fishes Academic Press 1963
	Greenwood P.H. – Norman's History of Fishes 3 rd edn Ernest 1975
	Lagler, Bardach, Miller & May Passino – Ichthyology Wiley 2003
	Pillay – Aquaculture: Principle and Practices of Fishing 1st Indian edn New Books 2006

ELECTIVE COURSE [ECZOOL302B]:

Marks 30 (MSE 20 1 Hr + 5 Attd. + 5 Assign) + 70 (ESE : 3 Hrs) = 100 Pass Marks (MSE : 17 + ESE : 28) = 45

MID SEMESTER EXAMINATION (MSE)

The Mid Semester Examination shall have three components: (a) Two Semester Internal Assessment Test (SIA) of 20 marks each. "Better of Two" shall be applicable for computation of marks for SIA. (b) Attendance / Regular Interactions of 05 marks and (c) Assignment of 05 marks.

END SEMESTER EXAMINATION (ESE)

A total of **EIGHT questions** will be set in which Question 1 will be **Short Answer Type** and **COMPULSORY**. Any **four** questions shall have to be answered by the examinees out of the remaining seven questions. The questions will be of equal marks and will be so framed that the students are able to answer them within the stipulated time.

B. ECOLOGY - I

UNIT – I Basic Ecosystem Concept

Concept of Productivity: Primary, Secondary and Tertiary; Factors and Methods of measurement. Energy Flow in Ecosystem: Food chain, Food web, Food pyramid, Lindeman's Trophic Dynamic concept, Energy flow models.

Theory: 60 Hours; Tutorial: 15 Hours

Concept of Limiting Factor: Shelford's Law of Tolerance, Leibig's Law of Minimum Fundamentals of Limnology

UNIT - II Community Ecology

The community concept. Development of the community through succession. Community organization and stratification. Classification of the community on the basis of life forms; Ecological Dominants, Species Diversity, Ecotypes, Ecotone and Edge Effect,, Concept of Ecological Niche: Niche Overlap, Niche Breadth, Ecological Release and Ecological Compression.

Major Biomes of the world: Forests, Tropical, Tundra, Grassland and Deserts and adaptations.

UNIT – III Population Ecology

Population Growth and attributes: Exponential, Sigmoid, Time lag Model, Stochastic Model; Natural Regulation of Population: Theories and Model for Population Regulation

Competition: Intra and Interspecific competition, Competitive ability, Lotka &Volterra models for competing species.

UNIT - IV Habitat Ecology

Physico-chemical and Biological Characteristics of Freshwater and Marine System; Origin and Classification of Lakes, Types and significance of Freshwater Biota.

UNIT – V Biodiversity:

Definition, Status, monitoring and documentation, Major factors affecting biodiversity destruction, Biodiversity conservation and management strategies

UNIT – VI Pollution Ecology:

Air, Water and, Soil pollution. Concept of: Bioaccumulation, Biomagnification, Bioremediation, Biosensors.

Reference

- 1. Mukherjee, B. Fundamentals of Environmental Biology, Silverline Publications, Allahabad 2011
- 2. Riddle M. Evolution. 2nd edn. Blackwell 1996
- 3. Piyanka E.R. Evolutionary Ecology 5th edn Harper Collins 1994
- 4. Simmons I.G. The Ecology of Natural Resources 2nd edn ELBS / Edward Arnolds 1983

P.G. CBCS NPU

5. Dash M.C. & Mishra P.C.- Man and Environment McMillan 2001

IV. <u>ELECTIVE COURSE PRACTICAL [ECZOOL303A]:</u> (Credits: Practical-05)

Marks: 30 (ESE: 20 Viva + 5Attd. + 5 Record) + 70 (ESE Pr: 6Hrs)=100 Pass Marks =45

FISH AND FISHERIES PRACTICAL

End Term (External) Assessment

Practical: 60Hours

Scheme of examinations Time: 6Hrs

Items

Anatomical observation

Gut analysis and determination of feeding habit

Temporary slides

Spotting

[Representative of major classes, histological slides, Endocrine section,

fish showing adaptation, exotic/ornamental/larvivorous fish]

Records and Sessional work

Viva voce

List of Practicals

Anatomical observation of a bony fish:

General anatomy, Digestive system of herbivore and carnivore fishes, Reproductive system,

Pituitary gland, Weberian Ossicle.

Representatives of major groups (except teleosts)

Taxonomic identification of important fresh water and marine fishes up to genus

Study of histological slides of various organs

Study of slides, related to annual breeding cycles - ovary, testis, pituitary etc.

Study of skeletal system of bony fish

Study of exotic, ornamental, larvicidal fishes

Study of adaptive features: hill stream fishes, fishes showing parental care, bioluminescence,

adaptations - feeding, respiratory, flying, poisonous, electric organs etc

विकास स

Haematology – blood corpuscles, T.C., D.C., and Hb content/ Haematocrit

ELECTIVE COURSE PRACTICAL [ECZOOL303B]:

Marks: 30 (ESE: 20 Viva + 5Attd. + 5 Record) + 70 (ESE Pr: 6Hrs)=100 Pass Marks =45

(Credits: Practical-05)

Practical: 60Hours

ECOLOGY PRACTICAL

End Term (External) Assessment

Scheme of examinations Time: 6Hrs

Items

Biotic analysis

Bio-statistical analysis

Records and Sessional work

Viva voce

List of Practicals

Biotic Analysis

Sampling and identification of freshwater planktons.

Qualitative, quantitative assessment and working of Indices of diversity and dominance of Plankton, Benthos, Soil fauna, Soil microbes

Biostatistical Analysis

Analysis of correlation coefficient and simple linear regression in a set of data

Estimation of density and relation frequency by quadrate analysis

^{प्र}क्षो मा ज्य

Analysis of similarity index in the species composition by 2X2 contingency table

.....

SEMESTER IV

I. <u>CORE COURSE</u> [CCZOOL409]: (Credits: Theory-03, Practical-02)

Marks 30 (MSE 20 1 Hr + 5 Attd. + 5 Assign) + 70 (ESE : 3 Hrs) = 100 Pass Marks (MSE : 17 + ESE : 28) = 45

MID SEMESTER EXAMINATION (MSE)

The Mid Semester Examination shall have three components: (a) Two Semester Internal Assessment Test (SIA) of 20 marks each. "Better of Two" shall be applicable for computation of marks for SIA. (b) Attendance / Regular Interactions of 05 marks and (c) Assignment of 05 marks.

END SEMESTER EXAMINATION (ESE)

A total of **EIGHT questions** will be set in which Question 1 will be **Short Answer Type** and **COMPULSORY**. Any **four** questions shall have to be answered by the examinees out of the remaining seven questions. The questions will be of equal marks and will be so framed that the students are able to answer them within the stipulated time.

MAMMALIAN REPRODUCTIVE PHYSIOLOGY & BIOTECHNOLOGY

Theory: 60 Hours; Tutorial:15Hours

UNITI

Mammalian Reproductive Physiology

- Different mechanisms of sex determination in vertebrates (genetic, hormonal, thermal)
- Testicular and ovarian hormones: sites of secretion, control and effects; Sperm maturation in male reproductive tract and the role of testicular hormones in eutherian mammals
- Ovarian and uterine cycles and their control by ovarian and hypophyseal hormones in eutherian mammals
- Implantation mechanism and control..Delayed implantation; Sterility due to hormonal defects
- Manipulation of mammalian reproduction: Hormonal contraceptives, Super ovulation, IVF, Embryo-transfer

UNIT II

Biotechnology

- o Enzymes and their application.
- Vectors: Cloning and expression vectors, Properties of vectors. Some important vectors: pBR322, pUC,

P.G.	CBCS	NPU
P.G.	CBCS	NP

- o Cosmids, BAC, YAC.
- Selection of recombinants; Sources of cloned DNA; Genomic DNA library; DNA library, PCR.

24

Application of Biotechnology: Preparation of transgenic animals Mechanism of production of growth hormone, insulin, interferons. Hybridoma technology: Monoclonal antibody production

Gene Therapy

Refrences:

	Austin (C. R. &	Short 1	7.5	V.	-R	eprod	action i	n Mammal	Books	1 to 7	Car	nbridge
--	----------	---------	---------	-----	----	----	-------	----------	----------	-------	--------	-----	---------

□ Nalbandov A.V. – Reproductive Physiology Taraporevala 1970

Tienhoven A. V. – Reproductive Physiology of Vertebrates 2nd edn. Cornell Univ

A Text-Book Reproduction in Farm Animals (Theriogenology) Varghese 1994

Ramaswami L.S. – Vertebrate Neurosecretion: A Review INSA 1980

Norris D.O. - Vertebrate Endocrinology 3rd edn. Elsevier / A,P. 2006

Bolander F.F. - Molecular Endocrinology 3rd edn Elsevier / A,P. 2006

Hadley M.E. – Endocrinology 5th edn. Prentice Hall Int. 2000

Gorbman A., Dickhoff W.W., Vigna S.R., Clark A.B. & Ralph C.L. – Comparative Endocrinology John Wiley 1983.

Mitra S. – Genetic Engineering; Principle and Practice. Mac Millan 2002

Smith J.E. – Biotechnology. 3rd edn. Cambridge Univ. Press 1986

Balsubramanian D., Bryce C.F.A., Dharmalingam K., Green J. & Jayaraman . – Concepts in Biotechnology. Universities Press 2002

Bains W. - Biotechnology: From A to Z. 2nd edn. Oxford 1998

Kumar H.D. – A Textbook on Biotechnology. Affiliated East West 1991

P.G. CBCS NPU

II. ELECTIVE COURSE [ECZOOL404A]:

(Credits: Theory-04, Tutorial-01)

Theory: 60 Hours; Tutorial: 15 Hours

Marks 30 (MSE 20 1 Hr + 5 Attd. + 5 Assign) + 70 (ESE : 3 Hrs) = 100 Pass Marks (MSE : 17 + ESE : 28) = 45

MID SEMESTER EXAMINATION (MSE)

The Mid Semester Examination shall have three components: (a) Two Semester Internal Assessment Test (SIA) of 20 marks each. "Better of Two" shall be applicable for computation of marks for SIA. (b) Attendance / Regular Interactions of 05 marks and (c) Assignment of 05 marks.

END SEMESTER EXAMINATION (ESE)

A total of **EIGHT questions** will be set in which Question 1 will be **Short Answer Type** and **COMPULSORY**. Any **four** questions shall have to be answered by the examinees out of the remaining seven questions. The questions will be of equal marks and will be so framed that the students are able to answer them within the stipulated time.

FISH AND FISHERIES-II

Fish and Fisheries

α. Cultivable water – quality and quantity

Physical and chemical properties of water influencing fish culture

Natural food for fish in pond

Role of plankton, blooms and benthos in fish culture

Fertilizers and their role

Supplementary feeding and artificial feeds

Sewage fed fisheries, Integrated fish culture, paddy field fish culture and cage culture.

Important reservoirs and rivers of Jharkhand – their problems and commercial

Common aquatic weed and their control

β. Cultivable species

Introduction of exotic species – Composite culture, extensive and intensive culture

χ. Fish seed production

Induced breeding – importance, technique, physiology and new generation of commercial agents Collection of seeds from natural resources - transport of carp seeds and breeders Management of nursery, rearing and stocking ponds

δ. **Fishing technology** – nets, crafts, gears, acoustic and other recent techniques.

☐ Greenwood P.H. – Norman's History of Fishes 3rd edn Ernest 1975

og	, , , , , , , , , , , , , , , , , , , ,		
References:		77 1 1 1 1 1 1 1 1	
☐ Wootton R.J Fish Ed	cology Blackie 1992		
\square Nikolsky G V = The I	Ecology of Fishes Academi	c Press 1963	

P.G. CBCS NPU

ELECTIVE COURSE [ECZOO404B]:

(Credits: Theory-04, Tutorial-01)

Marks 30 (MSE 20 1 Hr + 5 Attd. + 5 Assign) + 70 (ESE : 3 Hrs) = 100 Pass Marks (MSE : 17 + ESE : 28) = 45

MID SEMESTER EXAMINATION (MSE)

The Mid Semester Examination shall have three components: (a) Two Semester Internal Assessment Test (SIA) of 20 marks each. "Better of Two" shall be applicable for computation of marks for SIA. (b) Attendance / Regular Interactions of 05 marks and (c) Assignment of 05 marks.

END SEMESTER EXAMINATION (ESE)

A total of **EIGHT questions** will be set in which Question 1 will be **Short Answer Type** and **COMPULSORY**. Any **four** questions shall have to be answered by the examinees out of the remaining seven questions. The questions will be of equal marks and will be so framed that the students are able to answer them within the stipulated time.

iiswei t	them within the supulated time.
ECO	LOGY-II Theory: 60 Hours; Tutorial: 15 Hours
Ecolog	y .
ε.	Pollution Ecology
ф.	Water Pollution:
	Types and sources of pollution; Biodegradable and Non-degradable pollutants; Eutrophication.
γ.	Air Pollution:
	Sources and Effects of Air Pollutants; control measures.
400	(**
η.	Ecotoxicology:
	Toxicology: Routes and rate of administration; Environmental and behavioral factors affecting
	Toxicity; Synergism and Antagonism; Mechanism of action; Basic Principle of Dose Response
	relationship; Biotransformation of Toxicants; Translocation of Toxicants Antidotes; Toxicity
	Tests; Xenobiotics.

References

Chapman – The Insects: Structure and Function 4 th edn ELBS 1998
Imms A.D. – A General Text Book of Entomology 2 volsw. Asia Publ 1997
Wigglesworth - Principles of Insect Physiology ELBS 1972

III. <u>ELECTIVE COURSE PRACTICAL [ECPZOOL405A]:</u> (Credits: Practical-05)

Marks: 30 (ESE: 20 Viva + 5Attd. + 5 Record) + 70 (ESE Pr: 6Hrs)=100 Pass Marks =45

FISH AND FISHERIES PRACTICAL

End Term (External) Assessment

Practical: 60Hours

Scheme of examinations Time: 6Hrs

Items

Plankton identification

Taxonomic identification of fresh water fishes

Fish showing adaptive feature

Records and Sessional work

Viva voce

List of Practicals

Study of fishing gears and ecological equipments

Collection, identification of plankton, weeds and aquatic plant

Determination of feeding habit on the basis of gut / gut content

Visit to fish market, landing site, fish pond, fish farm, breeding centers, fish reservoir and National *Fisheries Research*

ELECTIVE COURSE PRACTICAL [EPZOO405B]:

Marks: 30 (ESE: 20 Viva + 5Attd. + 5 Record) + 70 (ESE Pr: 6Hrs)=100 Pass Marks =45

ECOLOGY PRACTICAL

Practical: 60Hours

(Credits: Practical-05)

End Term (External) Assessment

Scheme of examinations

Time: 6Hrs

Items

Water analysis

Soil analysis

Adaptation Study Spotting (5 X 3)

Records and Sessional work

Viva voce

List of Practicals

Water Analysis

Estimation of BOD of sample

Estimation of Carbonate, Bicarbonate and Hydroxide & chloride in sample water

Estimation of hardness & Oxygen and Carbon of sample water

Estimation of Magnesium and Calcium in sample water

Soil Analysis

Estimation of OMC / Total Carbon of a soil sample

Estimation of CaCO₃ in a soil sample

Estimation of soil respiration rate in a sample

Adaptation study

Aquatic insects, Terrestrial Insects, Freshwater fish (Hill Stream fish)

Marine fish & Higher Vertebrates

Ecological Equipments

Ecological significance of plants and earthworm

Identification of Aquatic plants and Bioindicator Species

^कसो मा ज्योतिर्गर्य

IV. CORE COURSE [CCZOOL410]:

PROJECT (Credits: 05)

Marks: 100 (ESE: 3Hrs)=100 Pass Marks =45

Guidelines to Examiners for

End Semester Examination (ESE):

Overall project dissertation may be evaluated under the following heads:

- α. Motivation for the choice of topic
- β. Project dissertation design
- χ. Methodology and Content depth
- δ. Results and Discussion
- ε. Future Scope & References
- φ. Participation in Internship programme with reputed organization
- γ. Application of Research technique in Data collection
- η. Report Presentation
- t. Presentation style
- φ. Viva-voce

PROJECT WORK

Each student has to submit two copies of the dissertation work duly forwarded by the HOD of Department concerned. The forwarded copies will be submitted in the Department of Zoology, Nilamber Pitamber University, for evaluation.

The paper will consist of

- (a) Field work/Lab work related to the project.
- (b) Preparation of dissertation based on the work undertaken.

Topics

Project work related to the following relevant to the topics of the Course, relevant topics may be given water pollution, water conservation, Territorial insect.

NB:- Students will select topics for the project work in consultation with a teachers and Staff of department.